s \E
KARNATAKA STATE @M OPEN UNIVERSITY

Mukthagangothri, Mysuru - 570006

M.Sc. PHYSICS
(FIRST SEMESTER)

ECLIPTICAL

POLE 3 NUTATION

Course- MPDSC 1.1

Classical Mechanics



+
M.Sc. PHYSICS

FIRST SEMESTER

Course: MPDSC 1.1

CLASSICAL MECHANICS

<4~



Programme Name: M.Sc. Physics Year/Semester: | Semester
Course Code: MPDSC 1.1 Course Name: Classical Mechanics
Credit: 4 Unit Number : 1-16

COURSE DESIGN COMMITTEE

Dr. Vidyashankar S. Chairman
Vice Chancellor

Karnataka State Open University

Mukthagangothri, Mysuru-570006

Prof. Ashok Kamble Member
Dean (Academic)

Karnataka State Open University

Mukthagangothri, Mysuru-570006

Mr. S. V. Niranjana Course coordinator
Assistant Professor & Chairman
DoS in Physics, KSOU, Mukthagangothri, Mysuru-06

EDITORIAL COMMITTEE

1. Prof. N. K. Lokanath Chairman
DoS & R in Physics
University of Mysore, Manasagangotri, Mysuru-06

2. Prof. S. Krishnaveni External Subject Expert
DoS & R in Physics
University of Mysore, Manasagangotri, Mysuru-06

3. Mr.S. V. Niranjana Convener
Assistant Professor & Chairman

DoS in Physics

KSOU, Mukthagangothri, Mysuru-06

COURSE WRITER

Dr. Chethan Prathap. K. N. Block 1.1A to Block 1.1 D
Assistant Professor (Unit 1 to Unit 16)
University College of Sciences
Tumkur University, Tumkur-572103




COURSE EDITOR

Dr. Chandra
Assistant Professor, Department of Physics,
The National Institute of Engineering, Mananthavadi Road,

Mysuru -08

COPYRIGHT

The Registrar
Karnataka State Open University
Mukthagangothri, Mysuru-570006

Developed by the Department of Studies in Physics under the guidance of Dean

(Academic), KSOU, Mysuru.
Karnataka State Open University, 2022.
All rights reserved. No part of this work may be reproduced in any form or any other means,
without permission in writing from the Karnataka State Open University.
Further information on the Karnataka State Open University Programmes may be obtained from
the University’s Office at Mukthagangothri, Mysuru — 570 006.




TABLE OF CONTENTS

Page No

BLOCK 1.1A

Unit-1

Fundamentals: Newton’s laws of motion, frames of references, free body
diagrams, projectile motion with and without air resistance, Oscillations- Simple
harmonic motion, damped and driven harmonic motions.

1-21

Unit-2

Conservation laws: Mechanics of a particle and system of particles,
conservation of energy and momentum, elastic and inelastic collisions,
constraints, generalized coordinates and generalized momenta.

22-39

Unit-3

Lagrangian formulation: D’ Alembert’s principle and Lagrange’s equations of
motion, Hamilton’s principle of least action, Lagrange’s equations from

Hamilton’s principle, velocity dependent potentials.

40-53

Unit-4

Applications of Lagrangian formulation: Computing Lagrange’s equations,
Lagrangian under coordinate transformation, conservation theorems and
symmetry properties, determination of equations of motion for-Atwood machine,
simple pendulum, bead sliding on a rotating wire in a force-free region.

54-70

BLOCK1.1B

Unit-5

Central force problem: Central force, equations of motion and first integrals,
Binet’s equation, classification of orbits, Virial theorem, condition for closed

orbits, Kepler problem of inverse square force.

71-93

Unit-6

Scattering theory: Scattering in a central force field, differential and total
scattering cross section, impact parameter, lab frame and center of mass
frame, Rutherford scattering.

94-106

Unit-7

Hamiltonian formulation: Legendre transformations and the Hamilton’s
equations of motion, cyclic coordinates and conservation theorems, Routh’s
procedure, Hamilton’s equations from variational principle, applications of
Hamiltonian formulation.

107-123

Unit-8

Canonical transformations: Point transformations, general canonical
transformation, the symplectic condition, invariants of canonical
transformations, generating functions, classical Gauge transformations,
applications of canonical transformations.

124-141

iv




BLOCK 1.1C

Unit-9

Poisson brackets: Poisson brackets and other canonical invariants,
equations of motion and conservation theorems in Poisson bracket
formulation, angular momentum.

142-155

Unit-10

Hamilton-Jacobi theory: Hamilton-Jacobi equation, harmonic oscillator
using Hamilton-Jacobi method, Hamilton’s characteristic function,

ignorable coordinates and the Kepler problem.

156-168

Unit-11

Rigid body dynamics-1: Degrees of freedom, center of mass, orthogonal
transformations, Euler angles, Euler’s theorem, finite rotations,

infinitesimal rotations, Coriolis effect.

169-186

Unit-12

Rigid body dynamics-2: The angular momentum and kinetic energy of
motion about a point, inertia tensor and principal axis transformations,
Euler equations of motion, torque free motion of rigid body, heavy
symmetrical top with one point fixed.

187-205

BLOCK 1.1D

Unit-13

Small Oscillations: Simple harmonic oscillations, eigen value equation
and principal axis transformation, frequencies of free vibration and normal
coordinates, free vibrations of linear triatomic molecule, forced vibrations.

206-225

Unit-14

Special Theory of relativity: Galilean relativity, Michelson-Morley
experiment,  Special theory of relativity-postulates, Lorentz
transformation, Consequences: Length contraction, time dilation and
velocity addition theorem.

226-242

Unit-15

4-vectors: Minkowski space: space-like, time-like and world line. Proper
time and proper length, 4-velocity, 4-acceleration, 4-momentum, and 4-
force.

243-256

Unit-16

Relativistic dynamics: Relativistic motion of a particle, rest energy and
relativistic energy of the particle. Mass-energy equivalence, Evidences of
mass-energy equivalence. Principle of general theory of relativity.

257-270




PRELUDE

Mechanics is the foundation of science and engineering. Its principles apply to vast range and
variety of physical systems. The aim of classical mechanics is, and always will be, to
understand physical phenomena and laws of mechanical world in its simplest form and to
apply to diverse everyday situations. The behavior of classical systems is surprisingly rich.
The word classical means time tested. This is the science which has been developed from
ages starting from the invention of wheel from our ancestors to launching of mars mission
recently. Still there is lot of scope of further growth.

This course aims in bringing a thorough understanding of classical mechanics and its
techniques which are widely used in most of the branches of physics and engineering.

The course consists of four blocks, each block containing four units.

The first block starts with the basic understanding of Newtonian mechanics and the
fundamental conservation laws of mechanics. Later it moves to analytical mechanics with the
discussion of Lagrangian and its applications to some systems

In the second block we can see the further application of Lagrangian formulation to
central force field in the first unit, introduction to scattering theory in the second and in later
units the discussion of another alternative formulation, the Hamiltonian formulation in
mechanics. Further in this block there are discussions on canonical transformations which
form one of the very powerful tools in Classical Mechanics.

The third block starts with Poisson brackets, then Hamilton-Jacobi method which is
considered to be powerful enough to bridge classical and quantum mechanics with few more
modification favoring the quantum theory. Later units of this block provide a detailed
discussion of rigid bodies.

The last block of this paper discusses very beautiful theory, the theory of relativity-

special and general. With the addition of an extra dimension to the way of our thinking, it

surprises us with its hard realities

Vi



UNIT-1: Fundamentals

Newton’s laws of motion, frames of references, projectile motion with and without air resis-

tance, Oscillations- Simple harmonic motion, damped and driven harmonic motions.

1.0 Objectives

After studying this unit you will be able to

¢ State and explain Newton’s laws of motion
* Explain the need of frames of references
* Explain projectile motion with and without air resistance

¢ Explain the simple harmonic oscillations, damped and forced oscillations

1.1 Introduction

Mechanics is the description of motion of a system. The aim of mechanics is to find the position,
velocity, acceleration, momentum, kinetic energy and many other properties associated with a
physical system at any point of time. These variables are often expressed as functions of time
and those expressions are called as equations of motion. Hence, we can equivalently say that

the aim of the mechanics is to find the equations of motion of physical system.

1.2 Newton’s laws of motion

Newton’s laws of motion provide one of earliest descriptions of motion of particles, system
of particles or any system in general. According to the description of Newtonian approach, a
system under study is separated from everything else in the universe, that is also called sur-
rounding. The system may get influenced by the surrounding. The sum total of these influences
is called as force. Hence a force on a system is a mechanical influence on the system. Newton’s

laws of motion describe the motion of the system when there is no force acting on the system
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as well as when there is a force acting on the system. There are three laws of motion given by

Newton, they can be termed as: Law of inertia; law of action; and law of action and reaction.

1.2.1 Law of inertia

The Newton’s first law is also called law of inertia. It is defined as ‘Every particle or a system
continues to be in the state of rest or in uniform motion whenever there is no external force
acting on the system’. According to Newton’s first law of motion, an object at rest tends to
stay at rest and an object in uniform motion (motion with constant velocity) tends to stay in
the uniform motion with the same speed and in the same direction unless acted upon by an
unbalanced force.

Objects often tend to resist changes in their state of motion. This tendency of opposing any
changes in their states of motion is described as inertia. An object with higher inertia maintains
its state of rest or uniform motion more effectively than an object with lesser inertia. For all
translational motion, one can show that the inertia is equal to the mass. An object with higher
mass has a greater tendency to resist changes in its state of motion and an object with lesser
mass has lesser tendency to resist changes in its state of motion. Forces are said to be balanced
when the net force on the object are zero. That is when all the forces are added up the resultant
force is zero.

The first law defines the property of inertia. Hence it is also known as law of inertia. The
Newton’s first law as well as the property of inertia can be witnessed almost everyday in our
surroundings.

A person sitting or standing in a bus tend to fall backward when the bus suddenly starts to
move. This is due to inertia of rest. When the bus suddenly starts, the lower part of the body of
the passenger which is in contact with the bus moves along with the bus while the upper part of
the body tends to retain its state of rest due to inertia. As a result, the passenger falls backward.
Similarly, when moving bus suddenly stops, the passengers sitting or standing in the bus are
thrown forward due to inertia of motion. When a branch of a tree is vigorously shaken the fruits

and seeds in it fall down due to inertia of rest.

1.2.2 Law of action

We defined the force as the mechanical influence of surroundings on a system. Many a times

even though there are several forces acting on a particle or a system, there may be no net effect
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as they balance their effects. An influence in action can be observed only when the forces are
unbalanced. The presence of an unbalanced forces influence the system to change its state of
motion. Newton’s second law describes motion of objects in the presence unbalanced forces.
The Newton’s second law states that “The rate of change of momentum of a particle is directly
proportional to the net force acting on the particle and it takes place along the direction of the

force’.

—

P

dt

The linear momentum is the product of mass and velocity. For most of the particles for which
the mass can be treated as constant, the above expression becomes,
dp  d(m?) dg

F=r=—a ~"u

Note that F here is the net force acting on the object. The net force is the sum of all the forces
acting on an object. The first law refers to the simple case when the net external force on a
body is zero. The second law of motion refers to the general situation when there is net external
force acting on the body. It relates the net external force to the acceleration of the body. Thus,
Newton’s second law says the net force on a body is equal to the product of the body’s mass
and its acceleration.

The acceleration produced in an object is directly proportional to the force acting and in-

versely proportional to the mass of the object.

1.2.3 Law of action and reaction

Newton’s third law describes the interaction between to particles or objects. During such an
interaction a force acts on each body due to the other body. This implies there must be two
objects participating in the interaction. One being pushed (or pulled) and another doing the
pushing (or pulling). Thus, forces result from interactions between objects. These forces are
always exist in pairs. Newton’s third law describes these pair of forces and states as ‘for every
action there is an equal and opposite reaction’.

In every interaction, there is a pair of forces acting on the two interacting objects. Forces

3
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always come in pairs - equal and opposite action-reaction force pairs. For two interacting objects

A and B we can write the Newton’s third law,

Fap = —Fpa

The negative sign indicate that these two forces are in opposite directions. We call the forces
between two interacting bodies a third-law force pair. A third-law force pair exists when any
two bodies interact in any situation. This is true if two objects are stationary or even if they are

moving with constant velocity or with an acceleration.

1.3 Frames of references

A frame of reference includes the minimum necessary mathematical tools to describe the motion
of a particle or a system of particles. It usually includes a coordinate system and a clock to
describe where and when the particle is at any instant of time. There are two types of frames of
references: An inertial frame of reference and a non inertial frame of reference.

A frame of reference in which Newton’s laws of motion are valid are known as inertial frames
of references. In such frames of references, an object changes its state of motion only when there
is a net force acts on the object. Any frame of reference at rest and moving with constant velocity
is a inertial frame of reference. Any frame moving with constant velocity with respect to an

inertial frame of reference is also an inertial frame of reference.

YLl gp
xLy.250

pt

(Frame-S) (Frame-57)

z

Figure 1.1: Inertial frames of reference

A frame of reference in which Newton’s first law is not valid is known as non-inertial frame

of reference. In such frames of references, an object may change its state of motion even when

4
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there is no unbalanced force acting on the object. An accelerated or a rotating frame of reference
is a non-inertial frame of reference.

Consider two frames of references S and S’ moving with relative velocity v along x-axis as
shown in figure 1.1. The observes in the two frames will give two different coordinates to the
same particle at a point P as observed by both. The coordinates are related to each other by
transformation equations

x' = x— vt Yy =y 7z =z =t

These equations are known as Galilean transformations.
During the description of motion of a particle or a system of particles when we use the term
‘observer’, it means with respect to a frame of reference fixed to the observer. More details about

the frames of reference will be studied in Unit-13.

1.4 Projectile motion

A projectile motion is the motion of an object projected in uniform gravitational field like of
earth’s gravitational field on its surface. When an object is thrown at an angle of inclination

with the horizontal, the path of the object is known as projectile.

1.4.1 Projectile motion without air resistance

Figure 1.2: Projectile motion without air resistance

Let a body be projected at an angle a with the horizontal with a velocity 7. The motion will

remain in the vertical plane of the velocity vector 7. Let us take the x-axis along the horizontal
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and the y-axis upward along the vertical direction in the plane of motion. We write the initial

conditions as

X(t=0)=vo,cosa =U and y(t=0) =0v.sina =V
There is a uniform gravitational force acting on the body vertically downwards and there is
no force acting on it along horizontal direction. Hence the equations of motion of the projectile
will be
mi =0, and mij = —mg

Integrating the above equations we obtain

x=0C and y=—gt+C2

Using the initial conditions, we can show that C; = U and C; = V. Then,

x=U and y=—gt+V

Upon integration and using the initial conditions again we get,

1
x = Ut and y= —Egtz—{—Vt

The above two equations together provide the trajectory of the particle. we can combine

: . x
them to obtain the equation of the path as t = 0] and hence,

_r_1 (1)2
Y= u 28\u
We have
V—tanzx
0=
and
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1 1 1 > 1 2
2~ o2(cosa) my o= 002(1 + tan” &)

Substituting these expressions in the equation of trajectory we get,

gx?
= xtana —
Y 20,2

(1+ tan2 )

This is the equation of a parabola. Hence, when there is no air resistance, all projectile motion
follow a parabolic path. We can define the maximum distance covered by the body as the range

R, the expression for which can be shown to be
R — 0,2 sin 2a
8

The time required to cover this distance equal to range will be

_ 2V _ 20, sin «
8 8

T

1.4.2 Projectile motion with air resistance

Without air resistance

With air
resistance

Figure 1.3: Projectile motion with air resistance

Consider the motion of a projectile in the atmosphere in which the retarding force is offered
by the air resistance. Let us assume that the retarding force is proportional to the instantaneous

velocity. In this case, the equations of motion of the projectile in the component form will be

mi = —kmx and mij = —mg — kmy

The first equation can be modified as
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—k dt

¥ = —kx — — = —kx — d—x
dt X

Upon integration, we get,

ln(x) = —kt —+ C1

If the initial velocity along x-direction at t = 0 is v, cosa = U,

In(x) = —-kt+U = sx=Ue™

Integrating once again to obtain the expression for x,

u
X = _?e—kt + C2

Using the initial condition that x = 0 when ¢t = 0, we can show that C; = % Then the

definite solution to the above equation will be

X = =2 " (1—e")

u Kt Vo COS X
e ="

Consider the second equation

my:—mg—kmy _— y:—g—ky —_— d_z:_g_ky
S —
g +ky

On integration,

1
LIn(g +ky) =—t+C

The constant C can be obtained using the initial condition, t = 0, y = v, sina = V. Therefore,

C= % In(g + kV'). Then the above equation becomes,

1 1 1 1
%ln(g+ky) = —t+ %ln(ngkV) = Eln(g+k}]) — %ln(g—l—kV) = —t
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g+kyy g+ky
l”(g+kv>_ M= g

gHky=(@g+kvV)e ™ —  y=-fy4 gijkV ekt

Integrating once again,

gt (g+kv)e—kt+c/

V=T
The value of the constant of integration C’ can be obtain by the fact that y = 0 when t = 0 as
g+ kV
C' = 2

Then the final solution to the equation will become,

s

Thus the equations of the coordinates of the projectile as a functions of time will become

Uk 8t gHkVN o
x—?(l e ™) and y= ?4—( 2 )(1 e ™)

The path of the projectile is definitely not a parabola, but a much complex curve that depends

on several parameters.

1.5 Oscillations

Oscillations are one of the fundamental motion types found in nature. Subatomic particles such
as protons, neutrons, pions and even quarks execute oscillations. The oscillations are the basis
of atomic and molecular spectra including IR, UV, NMR and many other spectroscopic investi-
gations. The working of coupled electrical circuits are based on oscillations. Hence it is highly

important to understand the oscillations in their fundamental description.

1.5.1 Simple harmonic motion

Simple harmonic motion is the simplest of all oscillatory motions. If a particle is executing
oscillatory motion about a mean position x,, if the instantaneous displacement of the particle

at any point of time is x and instantaneous acceleration of the particle is a, then the oscillatory
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motion is said to be simple harmonic motion if

¢ The magnitude of acceleration at any point of time is always directly proportional to the

displacement at that instant and

¢ The acceleration is always directed towards the mean position.

Mathematically, the motion is said to be simple harmonic if

ax—Xx

The negative sign indicates that the acceleration is always directed towards mean position.
The simple harmonic motion can also be defined in terms of restoring force that is responsible to
maintain the particle at mean position that tries to bring it back to mean position whenever it is
displaced from it as an oscillatory motion is said to be simple harmonic in nature if the restoring
force that is always directed towards mean position is directly proportional to the instantaneous

displacement of the particle.

Fo—x

A simple example of simple harmonic motion can be taken as the motion of a particle at-

tached to a spring as shown in Figure 1.4.

k

0 =

Figure 1.4: A mass attached to a spring executing simple harmonic oscillations

Let a mass m attached to a spring of spring constant k is displaced from its mean posi-
tion. Whatever may be the direction of displacement, either an extension or compression is
produced in the spring upon displacement that results in the development of a restoring force
in the spring. We know form Hooke’s law, the restoring force developed in the spring is propor-

tional to the displacement of the mass.

10
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We introduce the spring constant as the constant of proportionality in the above equation,

F = —k%

2
This is the well known Hooke’s law. We also know that F = ma = md_t;C’ that gives,

k [k . . . —_—
Let, — = w?, where w = s the angular frequency of the simple harmonic oscillations.
m
Then above equation reduces to

d2
F=—w?x = i+wx=0 = <?+w2>x:0

The above equation is a second order homogeneous differential equation that represents the
simple harmonic motion. One can confidently say any motion that satisfies above differential
equation is known as simple harmonic motion. To find the solutions to above differential equa-
tion we have to determine the roots of auxiliary equation (that is A2 + w? = 0) that turns out to

be +iw. The general solution to the above differential equation can be written as

x(f)=A o'Wt | Beiwt

Initial conditions determine the value of the constants of integration A and B in above equa-
tion. Let us assume the particle was at extreme position with an amplitude of x, when t = 0
and was momentarily at rest, that means the velocity was zero at its extreme position.

Then applying the initial conditions to the general solution, we get,

x=Ae" +Be 7 — x,=A"+ B’ = x,=A+B

¥ = Ae“ (iw) +Be “—iw) = 0= A(iw) — Be(iw) = 0=A—B

Solving the above two equations gives us, A = % and B = % Using these values of

constants in the general solution we can rewrite the expression for instantaneous displacement

11
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of the particle as

iwt —iwt
Xo Xo _; e +e
x =2ty D00t — 2 L — x,coswt
2 2 2

Note that we got the instantaneous displacement expression as

x(t) = x, cos wt

If the initial conditions had been chosen as particle being at mean position when ¢ = 0 and

velocity being maximum, then we would have got

x(t) = x,sinwt

as the solution. Note that these are harmonic functions. Because the instantaneous displace-
ment of a particle executing this kind of motion is represented by simplest harmonic function
(single sine or cosine or even combination of them, but single frequency), the motion is called
simple harmonic motion. A sample representation of instantaneous displacement of a particle
executing simple harmonic oscillation is provided in Figure 1.5. Hence, one can also define sim-
ple harmonic motion as one in which the instantaneous displacement is either sine or cosine

function of time.

A
Z oA
L
=
L T T T T »>
& T T 3T 2T timet
. 2 2

>

Figure 1.5: Sinusoidal representation of the motion of a particle executing simple harmonic
oscillations

12



Course MP 1.1 KSOU

1.5.2 Damped oscillations

Suppose that a resistive or a damping force is present in addition to the restoring force which is
necessary to produce the oscillations. We assume that the damping force is proportional to the
velocity of the particle and is given by Fy;;,p, = —2mpx with positive value of . The quantity
2my represents the damping force per unit velocity and is so chosen to simplify the calculations.

The equation of motion, then becomes

mi = —kx —2mux =  X+2ux+wix=0

Where, w? = % as before.

The above equation is a second order homogeneous linear differential equation whose solu-
tions can be determined by finding the roots of its auxiliary equation that is a? + 2ua + w? = 0

The two roots of the auxiliary equation will be & = —p & /2 —w? = p+ A. With A =
/112 — w2. Then the solution of the above differential equation can be written as

X = Ae—(;H—)\)t + Be—(y—/\)t _ e—yt(Ae—)tt + Be+)\t)

This is the general solution for the a damped oscillator. Depending on the values of y and
w,, different situations arises.

Case I: Over-damped motion

If 4 > w,, we can observe that > A and A is a positive number. Then the solution turns
out to be product of an exponential decay term e~ *! and a combination of an exponential decay
and growth terms (Ae M + Be™M).

With an initial condition of x = x, and x = v, at t = 0, we can show that

A:_vo+(y—)t)xo nd B:vo+(pt+)\)xo

2A 2A

When both x, and v, are positive, B, the coefficient of growth term is positive and A, the
coefficient of decay is negative. Moreover, the magnitude of B is greater than that of A.

If on the other hand, v, is negative, such that v, < —(y + A)x,, B will be negative and A
will be positive. Furthermore, magnitude-wise A is greater than B. Since the term containing A
decays more rapidly than the term containing B, the term containing B will be predominant after

some time when the term containing A becomes insignificant. Thus, the positive displacement

13
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will become negative crossing the equilibrium position and once again will tend monotonically
to the equilibrium position as shown in the figure 1.6.

Case II: Critically damped motion

If 4 = wo, we can observe that

lambda = 0. Then expression for the displacement will be

x=(A+B)e ™

Note that the solution turns out to be an exponential decay because of the presence of the
term e #!. Hence under this condition the displacement of the particle decreases exponentially
with time towards mean position.

Case III: Under-damped motion

If 4 < w,, we can observe that A becomes an imaginary number. Let us call it as v’ =

/w2 — u?. Then the solution of the oscillator becomes

x = e—,ut(Aeiw’t + Be—iw’t)

The terms ¢/t and et are essentially oscillatory functions. Hence the motion will be

oscillatory. However, the presence of exponential decay term e #! indicates that the amplitude
of the oscillations decreases exponentially. The variation of displacement of a particle executing

damped oscillations with under-damped condition is shown in the figure 1.6.

[

Over damped

Critically damped

Displacement

Under damped
Time

Figure 1.6: Representation of under damped, critically damped and over damped motion

14
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1.5.3 Forced oscillations

We saw in the previous section that a damped system would oscillate under certain conditions.
The amplitude of oscillation goes on decreasing since the energy is dissipated in overcoming the
resistive force. If the oscillations are to be maintained, energy must be supplied to the system
to make up for the losses. If this is done by applying an external driving force which is time
dependent, the oscillations are called the forced oscillations. The equation of motion of such a
system is written as

F(t
mx = —kx —2mux + F(t) — X+2yx+w§x:%

Let us assume the driving force is sinusoidal as F(t) = F, sin wt

Then the equation of motion of the particle executing the forced oscillations will become

X4 2ux 4+ wix = Fosinwt

This is a linear inhomogeneous differential equation and can be solved in may different
ways. The simplest method is to assume a solution as x = Asin(wt — 6) and determine the
constants A and 6 in accordance with the differential equation and the initial conditions.

Substituting the x = Asin(wt — 0), ¥ = Acos(wt — ) w and ¥ = —Asin(wt — 0) w? in the
above differential equation we get

F,
—Aw?sin(wt — 0) + wpAw cos(wt — ) + w2 Asin(wt — 0) = EO sin wt

The right hand term in the above equation can be modified by adding and subtracting 0 as

F, F, F, F,
—sinwt = — sin ((wt — 0) +6) = — sin(wt — 6) cos b + — cos(wt — 0) sin
m m m m

Therefore
—Aw?sin(wt — 0) + wpAw cos(wt — 0) + w2 A sin(wt — 0)

F F
= 2 sin(wt — ) cos O + > cos(wt — 0) sin 6
m m

Comparing the coefficients of sin(wt — 6) and cos(wt — 6) on the two sides of the above

15
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equation, we can write,

F, F,
—Aw? + w2A = 2 cosf and 2uAw = —>sinf
m m
On solving the above two equations we can get the expressions for A and 6 as

Fo,/m 1 2uw
A= d 0=t —~
V(@2 = )2 + 422 an an <(w§ — w2)>

With these constants, we can write the expression for the instantaneous position of the par-

ticle executing the forced oscillations as

. Fo/m . Py
R

1.5.4 Resonance

Resonance is a condition in forced oscillations in which the amplitude of the oscillations in-
creases and becomes maximum at certain frequency of the periodic force applied.
This maximum point can be determined using the expression for amplitude and investigat-

ing for the maximum of the function.

A F,/m
V(@Z — 2 + ap?
A d*A
The amplitude becomes maximum when do = 0 and Tz < 0. Hence at maximum,
dA _ d 1E 2 2 2, 2\—1/2] _
%—%[%((wo—w)—élyw) }—O
—
_F _
2m0 [((w% — w?)? + 4pPw?) 3/2 (2(w? — w?) - 2w + 4p* - Zw)} =0
—
—F(2(w; — w?) - 2w + 4p* - 20)
2m((w? — w?)? + 4y2w2)3/2
—
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(2(w? — w?) - 2w + 4p* - 2w) =0

2w? —w?)+4p*> =0 = w?=w?-2

Hence the amplitude of the oscillation becomes maximum when the frequency of the peri-
odic driving force becomes w = /w2 — 2u?. This is called resonance.

Further, we can propose that the damping is very less and w? >> 2u? under which the

resonance will occur when w = w,. In words, The amplitude becomes maximum when the

frequency of the driving force becomes equal to the natural frequency of the oscillator.

1.6 Check your progress

Check your progress by answering the questions below.

1. What is inertia?

2. Newton’s third law says that for every action there is

3. What is an inertial frame of reference?
4. What is a simple harmonic oscillation?

5. Explain the phenomena of resonance.

1.7 Keywords

e Tnertia
¢ Frame of reference
¢ Newtonian mechanics

¢ Free and forced oscillations
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1.8 Worked examples

1. A stone of mass 200 g is thrown in a direction that makes 60 degree angle with the hori-
zontal with an initial velocity 30 ms~!. Determine the range of the stone assuming there is
no air friction.

Answer:
Data:
m = 200g = 0.2kg
Vo = 30ms 1

6 = 60°

We know the expression for the range of the projectile

R— v2 sin 26
8
2 .
R = % — 79.53m

2. A spherical metal ball is thrown with an initial velocity of 40 ms~! along 45° with hor-
izontal plane. Assuming the acceleration due to gravity as 9.8 ms~2 and coefficient of
resistance as 0.5, determine the range of the ball. Compare the value when there is no air

friction.
Answer:

Data:

g =9.8ms?
6 = 45°
k=05

Because there is no direct expression for the range, we should find by the fact that the ver-
tical displacement becomes zero upon reaching the horizontal plane. Using the following
function we shall calculate the time of flight and the horizontal distance covered with that

time of flight would be the range of the ball.
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If y =0, we get,

gt <g+kV>(1 —e’kt)

kU k2

9.8t  19.8+0.5 x 40 x sin45 05t
05 ( 0.5 )(1 )

19.6t = 95.76(1 — e~ )

Expanding the exponential term upto second order term (This is just an approximation.

Higher order terms provide higher accuracy)

242
19.6t = 95.76[1 —(1—-0.5t+ 0.5

)]

On solving the above equation, we get, t = 2.3625s

To find the range of the ball, let us find the horizontal distance travelled in this duration

of time,

40 x cos45

kb
(1—e™) 05

X = (1 . e—O.5><2.3625) — 39.592m

= C

In the absence of the air friction, the range would have been

402 sin 90
R="""""—-163.26
9.8 "

Note that how much reduction in the range is caused by the air friction.

3. A sphere of mass 200 g is attached to a massless spring of spring constant 3.2 Nm ™! is set
into simple harmonic oscillations with with an amplitude of 8 cm. If there is a damping
coefficient of 0.5 is present due to air friction, check whether the oscillator is over damped
or critically damped or under damped. If under damped also determine the frequency of

oscillations.

Answer: We know
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1.9

| k /3.2
Wy =\ — =1/ =— = V16 = 4second
m 0.2

Given u = 0.5. This is less than w,, Therefore the situation in under damped. The fre-

quency of oscillation will be

w' = \/w?—u?=1+/42—-0.5%2 = V15.75 = 3.9686 Hz

A mass of 250 g attached to a massless spring resonates at 3.2 Hz. If there is a damping

with coefficient of 1.2, determine the spring constant.

Answer: We know the expression for the resonance frequency as

w? = w3 —2u® - w2 = w* + 24

2 k

wr==—=32242x122=13.12
m

. k=13.12x0.25 = 3.28Nm !

Questions for self study

. State and explain Newton’s laws of motion with examples.

What are inertial and non inertial frames of references?

. Describe the motion of a projectile without air resistance and determine the range and time

of flight.

Describe the motion of a projectile with air friction. Determine the horizontal and vertical

distance travelled as a function of time.

. What are simple harmonic oscillations? Determine the expression for the instantaneous

displacement of a simple harmonic oscillator.
What are damped oscillations? Provide the theory of damped oscillations.

Describe the forced oscillations and explain the phenomena of resonance.
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1.10 Answers to check your progress
1. Inertia is a property that is responsible to maintain the state of motion of a body.
2. Newton’s third law says that for every action there is an equal and opposite reaction.

3. A frame of reference in which Newton’s laws are valid is called an inertial frame of refer-

ence.

4. An oscillation motion in which the instantaneous acceleration is always proportional to
the displacement and directed towards the mean position is called simple harmonic oscil-

lation.

5. Under forced oscillations, when the frequency of the driving force becomes equal to the
natural frequency of the oscillating system, the amplitude of the oscillation becomes max-

imum. This phenomena is known as resonance.
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UNIT-2: Conservation Laws

Mechanics of a particle and system of particles, conservation of energy and momentum, con-

straints, generalized coordinates.

2.0 Objectives

After studying this unit you will be able to

* Describe the mechanics of a single particle.

e State and prove conservation of linear and angular momentum of single and a system of

particles.
* State and prove conservation of energy of a single and system of particles.
* Define the center of mass and describe the dynamics of center of mass.
* Describe the constraints of motion and their classification.

* Describe the need for generalized coordinates.

2.1 Introduction

Mechanical description of any physical system that consists of a large number of particles can
be easily understood when the mechanics of a single particle is known. In this section we shall

understand the mechanics of single particle in Newtonian approach.

2.2 Mechanics of a single particle

Let 7 be the position vector of a particle of mass m. Then the velocity of the particle will be

5 dr
dt

The linear momentum of the particle will be
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" ~ ar
p=mi=m_,

As the particle gets influenced by the external objects and fields which we together call as
surrounding, the particle may experience various forces. The vector sum of these forces will be
non zero when they are not balanced. Let F denote the net external force acting on the particle.

Then from Newton’s second law,

—

E= 2

dt
When the force acting on the particle is known as a function of time, above equation provides

a means of finding the equations of motion of the particle.

v = a7
-

The above equation is a differential equation that represents the equation of motion of the
particle. If the force acting on the particle is known as a definite function of time and if the
initial conditions of the particle are known one can solve the above differential equation through
integration and obtain the expression for 7 as function of time and hence can determine the
position of the particle at any instant. When the position function is known, by differentiating
it we can determine the velocity. Further, all the physical properties associated with the particle

can be calculated using those equation.

2.2.1 Conservation of linear momentum
If F = 0, then we get,

—

dp 5
I = 0 — p = constant

Hence, when the net external force acting on the particle is zero, the linear momentum gets
conserved. This is known as conservation of linear momentum.
This is also another representation of Newton’s first law which says when there is no force

acting on the particle it continues to be in its state of rest or motion with constant velocity.
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Motion with constant velocity also implies motion with constant linear momentum.

2.2.2 Conservation of angular momentum

The angular momentum of the particle with respect to a point O (This point O is the origin of
the frame of reference used to describe the motion) is defined as
L=7xp

If there is a force F acting on the particle, we can define the moment of the force, or the torque

with respect to the point O as

N=7xF

Consider the rate of change of angular momentum

E:E(rxp):erJra p
@—?xd—ﬁJrﬁxmﬁ
dat t

The second term consists of cross product between two parallel vectors and hence becomes

zero. Hence,
dL

From Newton’s second law we know d_;z = L. Therefore,

-

dL = —
E:?XF:N

Thus the rate of change of angular momentum is equal to the torque acting on the parti-
cle. Hence, if the total external torque acting on the particle becomes zero, then the angular
momentum remains constant.

Thus the conservation of angular momentum states that, when the total external torque act-

ing on a particle becomes zero, the angular momentum of the particle gets conserved.
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2.2.3 Conservation of energy

During the course of motion, let us assume the particle moves from position 1 to position 2
under the influence of the external force. Then the work done by the force upon this motion will

be the integral of dot product between the force F and displacement d5.

=

2
Wi = ["F.ds
1
If we assume the mass of the particle as constant, the above integral can be written as

—

= L [dp . dd
/F-ds—/E-vdt—m/E vdt

d
We can show that d_zt] U= 53 (v?). Then the work done expression will become,
2 d m
Wiy = — _ 2 2
275/ 2 / 2 (@2~ 71)
1 5, 1
Wi = Emvz 2m01 T, —T; (2.1)

Thus we can observe that the work done in moving the particle from position 1 to position 2
is equal to the difference in the kinetic energy of the particle at the two positions.

If the work done by the force field to take the particle from position 1 to position 2 along any
possible path between the two position remains same, then the force is said to be conservative
in nature. In other words, if the total work done in taking the particle from position 1 to position
2 along a path and to bring back the particle to position 1 along a different path is zero, then the

force field is said to be conservative.

fﬁ-pﬁ:o

If the force field is conservative in nature, the force can be expressed as the negative gradient

of a scalar function. This scalar function is called potential.

—

F=-VV(#)

The work done by the force can be taken as
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F.-ds=—-VV(#)-ds=—dV

Then the work done in taking the particle from position 1 to position 2 would be

2 2
lez/ F-d§=—/ av
1 1

Wp=—-(W-V)=V-V (2.2)

From equation 2.1 and 2.2 we can conclude that,

Lh—-Th=Vi=W - Ih+Vi=Th+WV

Thus we can conclude that the sum of kinetic and potential energies at position 1 and posi-
tion 2 are equal to each other. Generalizing the argument we can show that the sum of kinetic
and potential energies, which we often call as total mechanical energy is constant at every point
along the path of the particle. Hence, when the forces acting on the particle are conservative in

nature, the total energy remains constant at every point of the motion.

2.3 Mechanics of a system of particles

Consider a system of N number of particles. Let m; and 7; be the mass and position of i particle
respectively. Let F**! be the external force acting on the system. Let M = =N m; be the total
mass of the system. We define center of mass of the system as a point where the total mass
can be assumed to be concentrated. It is also the point about which the mass distribution is
symmetrical. The position vector of the center of mass is defined as
N
R= % - % Smr; (2.3)
Each particle in the system experiences two forces: an external force and an internal force
due to all other particles. Let ff"t be the external force on i particle and Z?Zém be the internal
force on i*" particle due to j** particle. Then the total force acting on the i*" particle would be

U =F"+} B, i#] (24)
j
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From Newton’s second law we know that the rate of change of momentum is equal to the

total force acting on the system. Hence,

—

d . o .
%:%ﬁf+2$ﬁz (25)

The first term on the right hand side of the equation 2.5 represents the external force on the

th particle and the second term is the vector sum of all the internal forces due to the ineraction of

the remaining N — 1 particles with i particle. From Newton’s third law we should remember
that these interaction forces are equal and opposite. That means, F;; int — —F int

The total rate of change of momentum of the whole system can be taken by taking the sum-

mation over i in equation 2.5

N
2 pz ZFext + ZPznt (2.6)

In the above expression the second term in the right hand side consists of terms that come
in pair wise. For example, if there is a term f{’;t, there will also be a term l?é’ft . From Newton’s
third law, we know that the sum of these two terms and hence all the pairs become zero as the
interaction forces are equal and opposite. hence, the second term in the right hand side of the

above equation becomes zero.
Y n=) E* 2.7)
i i
N 72 N 7, N
— . — . _ ex
Logr ~ LMy = Lmigy = LE 29
1 1

S5 Y mifi = ) Fer (2.9)

From the definition of center of mass we know Zf\] m;7; = MR. Hence, we can write

MEZ — MR = Fext (2.10)
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2.3.1 Conservation of linear momentum

The total linear momentum of the system can be taken as the sum of the linear momentum of

each particle.

N ) d N .
Zmi ?1' = E Zmﬁ’)i = MR (211)
i i

Hence, we can say that the linear momentum of center of mass is the linear momentum of
the whole system of particles. From equation 2.12 we can show that when the total external
force acting on the system becomes zero,

d°R dR

M~y = MR =0 — M= =M R = constant (2.12)

This is nothing but the conservation of linear momentum of the system of particles. Hence
we can state the law of conservation of linear momentum of system of particles as “‘When to
total external force acting on the system becomes zero, then the total linear momentum of the
system remains conserved’. Further, we can observe that the center of mass moves with constant

velocity when the total external force is zero.

2.3.2 Conservation of angular momentum

The total angular momentum of the system about any point will be equal to the vector sum of
the angular momenta of individual particles. Let [; represent the angular momentum of the ;"

particle about some point. Then,

I —7

X pi
In the above equation 7; is the position vector of i/ particle from the given point. Hence the

total angular momentum of the system of particle can be obtained by taking the vector sum of

the individual momenta as

N N
Zz szz
i i

Let N be the total torque acting on the system, then,
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N: pum

N_M >
o
X
=i
I
N_M >
ik
X
=i
+
..._M >
il
X
=i

Q..
H-
JES

In the first term, 7; X §; = 7; x 7; = 0
N= _ = N = 7 N 7i
Further, ) ;' 7; x p; = ), i X (Ffﬂ + 2]' P;]nt)

Consider

N

N
Y (7 x ZF”” = izj?i X 131?]?”

i

In the above expression, the terms always come in pairs. Hence one can write,

N 1 N
= pint __ = pint mt
1j 1
From Newton’s third law, we know that E-]- = F]l, Hence,
N L 1 L t 1N b it
2. m - ZTl n - Z. 11’1 Zi’l
IZ].:rZXPif =5 Z"IXPz] Zr]xl-" _ZIZ].:(rl ><F Zrl]xl-"l]

If the force of interaction between the i’ and j particle is along the line joining the two
particles, F, W111 be parallel to 7;;. In that case, the above expression becomes zero. This is also
known as strong law of action and reaction. Hence any interaction forces that obey strong law
of action and reaction will be along the line joining the particles interacting.

Then the torque acting on such a system of particles and hence the rate of change of angular

momentum will be

N =
—_ = Z?l X Fieﬁ
i

Because the above torque depends only on external force, we shall call this as external torque.
Hence, for a system of particles in which the interaction forces obey strong action and reaction
law, the rate of change of angular momentum is equal to the total external torque acting on the

system.
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If the total external torque acting on the system becomes zero, the total angular momentum
of the system remains constant.

Thus the conservation of angular momentum of a system of particles can be stated as ‘the
total angular momentum of a system of particles gets conserved when the total external torque

acting on the system becomes zero and the internal forces obey strong action and reaction law’.

2.3.3 Conservation of energy

In order to find the energy of the system, let us find the work done by all the forces - external as
well as internal - in moving the system from initial configuration 1 to final configuration 2. The
total work done in moving the system is equal to the sum of the work done in moving all the

particles from configuration 1 to configuration 2. Thus,

N 2, N 2,
Wm:Z/l Fi~d§i:2/l E .,
i i

N o N o
Wip =) /1 Fet - df; + ) /1 B,
i ij

If the internal and the external forces are conservative, then they can be expressed in terms

of corresponding potential energies. Thus, total force F; on the it" particle can be written as,

E =F~ +2me —VVi (2.13)

Where the potential energy V; = V! + Vi is the sum of the potential energy functions of

the external and internal forces. In the equation 2.13, the symbol V; is

0
1 ; laxl

and represents the gradient operator performing differentiation with respect to x;, compo-

nents of position vector 7; of the it particle. The operator can be written separately as
p p p P y

Fext V Vext and ]:”;i]ﬂt — _@ijviz}nt

Because the internal forces always exist in pairs, we can show that V" = ~ 21] V”” The

1 . .
factor = occurs due to the fact that each term is being taken twice while summing over i and j.
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The work done by the external forces will be

(2.14)

2 2 ’ )
Z/ Fl?xt -dr; = — Z/ Viviext A7 = Z/ dViext — Zviext 1
i J1 — J1 = )1

i

Z/ Fext d?’l— ext ext (2.15)

Similarly, the work done by the internal forces will be

/ mt (;lrl— / Fmt d?ij: / vljvmt d?z]

2 . 1
mt g2 int _ mt
;Aﬁjm%_ngdv v

The total potential energy of the system is then given by

— mt th

V = Vext i Vini’
In terms of the total potential energy of the system the work done is

2
Wi =—-V ) =Vi—V (2.16)

The work done Wy, can be expressed in terms of the difference between the kinetic energy

of the system in the initial and final configurations as follows:

2, 2 4 dr 5 av;
W12=Z/1 Fi'dri=2/1 E(mii Zmlli ' Zmllﬁ' v dt
i i
21d(v? 1 2
W= Yo [ 20D g [Fa(y Imed) = 7f =7 (217)

From the above two equations 2.16 and 2.17 we can conclude that

Vi—-Vh=T—-T — h+v=T+W

Thus the conservation of energy of the system of particles.
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2.4 Constraints of motion

A motion that cannot proceed arbitrarily in any manner is called a constrained motion. This
conditions which restrict the motion of the system are called constraints. For example, gas
molecules in a container are constrained by the walls of the container. A particle placed on
the surface of a sphere is restricted by the constraint so that it can only move on the surface or
in the region exterior to the sphere. There are two main types of constraints: holonomic and

non-holonomic.

2.4.1 Holonomic constraints

In holonomic constraints, the conditions of constraint are expressed as equations connecting the
coordinates and time. If there are N number of particles in a system and there are k number
of holonomic constraints, then there exist k number of independent equations connecting the

position coordinates of N number of particles as

f1(71,72,173...?N,t) =0
f2(71,72,73...7N,t) =0

f3(71,?2, 73...7]\], t) =0

fx(71,72,75..7N,1) =0

For example,

* In arigid body, the distance between any two particles of the body remains constant. The

equation of constraint will be

7 = 7> =

* The motion of an ant on the surface of a spherical surface. If x, y and z are the coordinates

of the ant and a is the radius of the sphere, then the equation of constraint will be

2Pt =a
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2.4.2 Non-holonomic constraints

Non-holonomic constraints are those which are not expressible in the form of an equation. The
coordinates in this case are restricted either by inequalities or some differential equations. Some-
times, expressing non-holonomic constraints may not be possible using any mathematical ex-
pressions.

For example,

¢ The motion of a a gas molecule inside a spherical ball. If x, ¥ and z are the coordinates
of the molecule and 4 is the radius of the sphere, then the constraint is expressed as an
inequality.

PP+ <a
* Motion of a vertical disc rolling on a horizontal plane is constrained by equations,
X =vsinf and y = —vcosf with v =a¢d

Where, 0 is the angle made by the line joining the point of contact of the disc with the
horizontal plane with x-axis parallel to y-axis. ¢ is the angle of rotation of the disc about

its axis.

2.4.3 Scleronomous and Rheonomous constraints

Constraints are further classified as scleronomous and rheonomouns. A scleronomous
constraint is one that is independent of time whereas a rheonomous constraint contains

time as an explicit variable.

The motion of the bob attached to a pendulum with an inextensible string of length [ is

constrained by the equation

This is scleronomous constraint.

If the length of the pendulum is either increased or decreased as a function of time, then

the constraint will turn out to be rheonomous.

24P =12
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2.5 Generalized coordinates

The number of independent ways in which a mechanical system can move without violating any
constraint is called number of degrees of freedom of the system. In other words, the degrees of
freedom is the minimum number of variables required to describe the position/configuration
of a system. If there are N number of particles in a system with no constraints, each particle
would require three variables to specify their position, then the minimum number of variables
required to specify the complete configuration of the system will be 3N.

When there are constraints present in the motion of a system the motion becomes restricted.
This intern creates an interdependency among various position coordinates. As a result of this
the degrees of freedom of the system decreases. If there are K number of constraints present in
the above example of a system of N number of particles, we will have K number of equations or
inequalities that make the variables interdependent. Hence we can make K number of variables
as dependent and the minimum number of variables required to describe the configuration of
the system will become, 3N — K.

But the interesting question is which among 3N variables must be selected as independent
and which must be treated as dependent variables? Often we will have complete freedom in
selecting and deciding the independent variables. In order to provide a general description, any
3N — k variables are chosen as independent variables and they are called generalized coordi-

nates.

q1, 92, 943 , -+« .. s J3N—K

In general these g;’s can be position coordinates, combination of position coordinates or
any other variables associated with the system. That is the reason they are called generalized
coordinates. The old position coordinates are expressed as functions of generalized coordinates

and the generalized coordinates are often expressed as functions of position coordinates as

?i = 771’(‘]1/ q2,93, ---q3N—K, t) withi=1,2,3...N

gr = q(71, 72, P3.. 7N, 1) withk =1,2,3..3N — K

The time derivatives of these generalized coordinates are defined as generalized velocities:

41, 42, 43,--43N—K
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2.5.1 Configuration space

To describe the motion of system of N number of particles having K number of constraints we
require 3N — K number of generalized coordinates. Hence in a 3N — K dimensional space, the
system can be represented by a point. This 3N — K dimensional space where the generalized
coordinates are taken as axes is called configuration space. As different particles of the system
moves the system traces a trajectory in configuration space. The path of the actual motion does

not necessarily resemble the path in the configuration space.

2.6 Check your progress

Check your progress by answering the questions below.
1. When the linear and angular momenta of a particle gets conserved?
2. State the law of conservation of linear and angular momenta of a system of particles.
3. What is the necessary condition for energy to be conserved for a system of particles.
4. What are constraints of motion?

5. What are generalized coordinates.

2.7 Keywords

¢ Conservation of linear momentum

* Conservation of angular momentum
¢ Conservation of energy

¢ Strong action and reaction law

¢ Constraints

¢ Generalized coordinates
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2.8 Worked examples

1. Three particles of masses 2kg, 2.5kg and 3.5kg are placed at points (2,0,2), (0,3,2) and (-2,-

2,0) respectively. Determine the coordinates of the center of mass.
Answer:
Data:

my =2kg r =(2,0,2)

my = 2.5kg 1 = (0,3,2)

mz = 3.5kg r3 = (-2,-2,0)

We know the expression for the position vector of center of mass is

_ XimiT;

Y.im;

my(x1,Y1,21) + ma(x2, Y2, 22) + m3(x3,y3,23)
m1 + my + ms

R =

2(2,0,2) +2.5(0,3,2) +35(—2,—2,0) 4—7,75-7,4+5

R= 2 +25+35 8

(—0.375,0.0625,1.125)

The coordinates of center of mass is (-0.375, 0.0625, 1.125)

2. Show that the number of generalized coordinates required to describe a rigid body is 6.
Answer:
Data:

A rigid body is defined as a system of particles in which the distance between any two

particle is fixed.

The number of generalized coordinates required to describe a system is equal to its degrees

of freedom. To find the degrees of freedom of a rigid body, let us start with a single particle.

The degrees of freedom of a single particle is 3 as it can move in any combination of three

mutually perpendicular directions in three dimensional space.
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If there are two such particles, the total degrees of freedom will be 6 (three for each par-
ticle). Let us introduce a constraint saying the distance between the two particle is fixed.

Then number of constraint is 1
Then the degree of freedom of this two particle system willbe 3N —k =3 x2 -1 =5.

Now let us introduce another particle with a constraint that the distance of the new particle
from the previous two particles are fixed. Hence the total number of particles is 3 and total

number of constraints is 3. Then the degree of freedom would be 3N —k =3 x3 -3 = 6.

Let us introduce the fourth particle with constraints that its distance from the other three
particles are fixed. Hence the total number of constraints will be 6. Then the degrees of

freedom would be 3N —k=3x4—-6=6

For any new particle introduced, the number of constraints also increase proportionately
that keeps the degrees of freedom of rigid body at 6. Hence the number of generalized

coordinates required to describe the motion of the rigid body is 6.

3. A particle of mass 200g is moving with an initial velocity of 15 ms~! along x-axis. If a force
of 2 N is applied on to the particle for 2.5 seconds along y-axis, determine the final velocity

and kinetic energy of the particle.

Answer: The particle is initially moving along x direction with a velocity of 15 ms™!. It

will continue to move with that velocity unless a force parallel to x-axis is not applied.
vy = 15ms™!

The force of 2 N is being applied along y-axis produces an acceleration of a = F/m =
2/0.2 = 10ms~2. Hence after 4 seconds, the velocity along y-axis will be,

vy = %atz = % x 10 x 2.5% = 31.25ms ™!

Then the final velocity will be & = 157 + 31.25]

The kinetic energy will be
1 1
T = Em(vi +oy) = 5 X 0.2 (152 4 31.25%) = 120.15]

4. Check whether the force field F = (x2 — xy)i + (y> — xy)] is conservative or not.

Answer: For a conservative force field the force can be obtained as negative gradient of

potential. If V is the potential, then
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2.9

Then we can write

—— =Xy—x and —— =Xy—y

Now if we integrate the above equations and if we can get the same potential function we
can conclude that is the potential function to derive the above force and hence the force

field is conservative in nature.

Ve = /(xy — x%)dx and Vy = /(xy —y?)dy

2 3 2
ve="X-Tafy)  ad V=L -Loif

We can not combine the above two to obtain one common function. Hence the given force

field is not conservative.

Questions for self study

. State prove the law of conservation of linear momentum of a single particle.
. State and prove the law of conservation of angular momentum of a single particle.

. State and prove the law of conservation of energy of a single particle.

State prove the law of conservation of linear momentum of a system of particles.

. State and prove the law of conservation of angular momentum of a system of particles.

State and prove the law of conservation of energy of a system of particles.

What are constraints? Explain the various types of constraints.

. What are generalized coordinates? Explain their significance.
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2.10 Answers to check your progress

1.

When the total external force acting on a particle becomes zero, its linear momentum gets
conserved. When the total external torque acting on a particle becomes zero, the angular

momentum of a particle gets conserved.

. When the total external force acting on the system of particle becomes zero, the linear

momentum of the system of particle gets conserved. When the total external torque acting
on the system becomes zero and when the internal forces obey strong action and reaction

law, the angular momentum of the system gets conserved.

. The energy of a system of particles gets conserved when both internal and external forces

are conservative in nature.

. Conditions imposed on motion of a system are known as constraints.

. Generalized coordinates are variables that are equal to degrees of freedom in number used

to describe the configuration of any physical system.
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UNIT-3: Lagrangian Formulation

D’ Alembert’s principle and Lagrange’s equations of motion, Hamilton’s principle of least ac-

tion, Lagrange’s equations from Hamilton’s principle, velocity dependent potentials.

3.0 Obijectives

After studying this unit you will be able to

* Describe the principle of virtual displacement and virtual work.

Obtain the equations of motion from D’Alembert’s principle of virtual work.

Describe the Hamilton’s principle of least action.

Deduce the Lagrange’s equations of motion using Hamilton’s principle of least action.

Describe the velocity dependent potential.

3.1 Introduction

Newton’s laws of motion provide a deterministic approach to find the equations of motion
of physical system. This means when all the forces acting on a physical system are specified
and when the initial conditions are known, the equations of motion that describe the posi-
tion/configuration of the system can be uniquely determined. This is evident, but may not
be easy at all the time. Knowing the initial conditions is not a problem, but specifying all the
forces acting on the system may not be possible at all the time. The forces due to external force
tields may be easy to determine, but the forces due to constraints are often difficult to determine.
For example, when a circular disc rolls on a horizontal surface, it experiences a constraint force
due to the normal reaction from the surface. When a molecule is bound inside a container, the
walls of the container exert force on the molecules whenever they tend to go away from the
container. These forces are often difficult to specify. On the other hand, these constraint forces
do not directly contribute to the motion, but without specifying them the equations of motion

can not be determined in Newtonian mechanics.
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Analytical mechanics that includes several different formalism provide alternative approaches
to Newtonian mechanics. Lagrangian formulation is one of them that is highly effective an
useful to find the equations of motion of physical systems when the forces of constraints are
unknown. The formalism is so defined that the constraint forces are not necessary to find the

equations of motion of the system.

3.2 D’ Alembert’s principle of virtual work

Consider a system described by n generalized coordinates q;(j = 1,2,3,...n). Suppose the sys-
tem undergoes a certain displacement in the configuration space in such a way that it does not
take any time and that it is consistent with the constraints on the system. Such displacements
are called virtual displacement because they do not represent actual motion of the system, the
work doen by the forces of constraint in such a virtual displacement is zero. If this case, the
virtual displacement is taken at right angles to the direction of the force i.e., along the surface,
so that the work done by the force during the virtual displacement is zero.

Let the virtual displacement of the i particle of the given system be 67;. If the given system
is in equilibrium, the resultant force acting on the i particle of the system must be zero, i.e.
E; = 0. It is the obvious that virtual work F; - 67; = 0 for the i*" particle and hence it is also zero

for all the particles of the system. Thus

dW =Y F - 6%;=0
i

The resultant force F; acting on the i particle is made up of the two forces: F?, the applied

force and fi, the force of constraint. Hence we can write,
1:";. — 1?1.“ + ﬁ
Then the corresponding work done under virtual displacement would be

ZE“-(S?i—f—Zﬁ-(Wi:ZE-(WZ’:O
i i i

Because the virtual displacement of the system is consistent with the forces of constraints,

the work done due to constraint forces on virtual displacement becomes zero.
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Zﬁu(sa:o
1

With this restriction we arrive at the principle of virtual work which states that the virtual

work done by the applied forces acting on a system in equilibrium is zero. Thus we have

Y F 67, =0
i

This is also known as D’Alembert’s principle of virtual work.

It should be noted that all the coordinates and hence the virtual displacements J7; are not
independent of each other. In fact, some of these must be connected by the equations of con-
straints. Hence we cannot treat virtual displacements J7; as completely arbitrary and equate
their coefficients. For this purpose, we shall have to transform coordinates 7; to independent
generalized coordinates g;. There is another point that needs consideration. Most of the systems
we come across in mechanics are not in static equilibrium. hence the principle must be modi-
tied to include the dynamic systems as well. This can be achieved by considering the Newton’s

equation of motion as,

iap!]
I
.
apl
|
=
Il
o

-~

3.3 Lagrange’s equations of motion from D’ Alembert’s principle

In order to obtain a constraint independent equations of motion, we have to transfer the D’ Alembrt’s
principle of virtual work in terms of generalized coordinates. We know that position coordinates

can be expressed as functions of generalized coordinates as

Fi=7(q)  i=123.Nandj=1,23.n=3N—k

consider an infinitesimal virtual displacement 67; at a particular instant of time ¢.
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arl
or; = Z Bq]
The variation with respect to the time is absent in the above equation because the virtual
displacement is assumed to take place at fixed instant of time. Further, the velocities are given
by

S . or; . J7;
Ui:Fi:Za—ql‘q]‘—f—a—tl
j ]

%4;
ot
generalized coordinates g; need not have the dimensions of length, generalized velocities need

In the above equation, 4; = are the generalized velocities. It should be noted that since

not have the dimensions of velocity.

The virtual work done by forces F; in terms of virtual displacements d7; is given by

oW =Y _F; - o7,
i

=Y (LF-
] 1

! J

—

8
Where Q; = Y, F —— represents the j component of the generalized force.

]
Consider the second term in the modified D’ Alembert’s principle of virtual work

a7

;Pi F0F; = ;5(%?1‘) $0F; = szmiri : a—q;‘sqj

The coefficient of 5g; on the right hand side of the above equation can be written as

A ai’l o d '_',. . 871 . ._',' . d 871
E mir; - =— = Ei [_dt (m;7 —aqj) mifi - = (—aqj)] (3.2)
In the above expression,

:;; (3.3)
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Similarly we can also show that

or; o7
L=t 3.4
Using expression in equations 3.3 and 3.4 in equation 3.2, we get,
miti - — = —(miti - =) — mir; - — (3.5
Zi: n aq] ; |:dt( . aq]) . aq]]
_dro 1 -0 d 1 -0
_ ﬁ{a_qj(;imlw )| - [a—%(;iml\rl\ )] (3.6)

The term (Y; %mi |7;|?) is nothing but the total kinetic energy of the system of particles. Let
this kinetic energy be denoted by T. Then we have
w of; d 0T oT
Y miFi o+ = (=) — = (3.7)
- . aq] dt <aq]>

Now combining the equations 3.1 and 3.7 we can rewrite the D’ Alembert’s principle of vir-

tual work as

d oT oT
Y (56 —50) - Qlag =0 (38)
Because each generalized coordinate is independent of other generalized coordinates, we

can equate each term of the above summation to zero. Thus we can write,

d oT, 0T

<ﬁ(a_q]~) - a_q,-> ~Qj=0 (39)

The above equation is actually a collection of n number of equations which together are
called Lagrange’s equations of motion.

If the forces acting on the particles are conservative in nature, they can be expressed as neg-

ative gradient of a scalar potential as

lap'l
I
|
<
N_<

The generalized force will be
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- OF; = a7 oV
Q=YFE L= -V,Vv.Lt=—-—
] Z -9, Z T

Using the above expression for the generalized force in the Lagrange’s equation we can write,

d (AT 9T 3V

AL L oV (3.10)
ddT\ AT-V)

= (a_q,-> ~ g 0 (3.11)

If we assume that the potential energy is just a function of position not velocity. Then the
derivative of the potential with respect to the velocity, will be zero. This is true for generalized

1% : . .
velocities also. Then addition or subtraction of 34, in the above equation will not contribute
j

V. . ) )
in any manner. Hence we shall include 3 in the first term of the above equation to attain a

]
uniformity. Note that this can not be done for velocity dependent potentials. Then we get
Y- y dep P &

d (a(T— V)> _IAT-V) _, (3.12)

In the above equation we shall define a new function called Lagrangian of the system as the
difference between the kinetic and potential energy functionas, L = T — V. Then the Lagrange’s
equations of motion in terms of the Lagrangian of the system will become

d (oL oL
(=YY= =0

These equations are also known as Euler-Lagrange’s equations of motion.

(3.13)

3.4 Hamilton’s principle of least action

Hamilton's principle of least action is stated as follows ‘Of all the possible paths along which a
dynamical system may move from one point to another within a given interval of time consis-
tent with constraints, the actual path followed is that which minimizes the time intgral of the
Lagrangian’.

The principle can alternatively stated as:

The motion of a system from an instant #; to another instant ¢; is such that the line integral

| tt12 Ldt with L = T — V is an extremum for the actual path of the motion. In terms of calculus of
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variation, we can state the Hamilton’s principle as

5]
5}:5/ Ldt =0

131

3.5 Lagrange’s equations of motion from Hamilton’s principle

The fundamental problem of the calculus of variations is easily generalized to the case where f
is a function of many independent variables y;, and their derivatives y;. Then the variation of

the integral |

2
5] = 5/1 F(2);92(x); o 11.(x); 92(x) oy %)

is obtained by considering | as a function of parameter a that labels a possible set curves

y1(x, a). Thuswe may introduce « by setting

yi(x, &) = yi(x,0) + ani(x)
The variation of Jcan be taken as
Bf Wi, . Of o
/2 aylazxd “T o ay; ou d>d
Again we integrate by parts the integral involved in the second sum of the above equation

2 of By O duip

23y, d (of
L Ay o T dyioal ( )"

1 Oa dx \ 9y

The first term of the above expression vanishes because all curves pass through the fixed end

points. The the variation in the integral | becomes,

o] = /Z ——E(af)]éydx (3.14)

Iy 9y
Because each y; are independent, the coefficients of each Jy; vanish in above equation. Hence,
of of
- = 1
ay; dx <ayl) (3.15)

According to Hamilton’s principle of least action, the integral
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2
I:/ L(qi,ql’,t)dt
1

Then the corresponding equations of motion can be obtained from the above integral func-

tion by replacing f by L, y; by g;.

oL d /oL
5 7 (a_q) =0 (3.16)

These are nothing but Euler Lagrange equations of motion.

3.6 Velocity dependent potentials

When the potentials depend on the velocity, the expression for the generalized force will be

ou d /ou
Q=5+ (5)

In the above expression, U(q;, §;) is called generalized potential or the velocity dependednt
potential.

Then the Lagrangian of the system can be taken as

L=T-U

And the Lagrangian equations of motion will be

oL d (9
5.~ i o)

3.6.1 Velocity dependent potential of electromagnetic fields

Whenever the force acting on a particle of system of particles becomes a function of velocity, the
corresponding potentials used to derive the force also become velocity dependent potentials. We
come across velocity dependent potential when we consider the electromagnetic forces acting
on moving charges.

Consider an electric charge, g of mass m moving at a velocity 7, in an region where both
electric field of intensity E and magnetic field of intensity B are present. The force experienced

by the charge is also known as Lorentz force is given by
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F = g[E+ (3 x B)]

Both E (x,y,z,t) and B (x,v,z,t) are continuous functions of space and time and are derivable

from a scalar potential ¢(x, vy, z, ) and a vector potential A(x, Y,z,t) as

E= V9% and  B=VxA

The force on the charge can be derived from the following velocity-dependent potential en-

ergy

U=qp—qA-7

Then the Lagrangian of the charged particle will be

L:T—U:%mvz—qcp+q;{-5

We can find the equations of motion of the charged particle using the above Lagrangian when
the definite functional form of the scalar and vector potentials are known. With this general
description also we can compute the equations of motion that will conclude in the expression

for the Lorentz force.

3.7 Check your progress

Check your progress by answering the questions below.
1. What is virtual displacement?
2. State D’Alembert’s principle of virtual work.
3. State the Hamilton’s principle of least action.

4. What are velocity dependent potentials?

3.8 Keywords

e Virtual displacement
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Virtual work
¢ Lagrangian
* Equations of motion

* Velocity dependent potential

3.9 Worked examples

1. Consider a particle moving in space. Using the spherical polar coordinates (7,6, ¢) as the
generalized coordinates, express the virtual displacements dx, Jy and 4z in terms of r, 6

and ¢
Answer:

In terms of spherical polar coordinates (r, 6, ¢), we have the expressions for x, y and z as

x = rsinfcos ¢ y =rsinfsing z =rcosf
9% _ sinfcos a—x—rcos€cos —— = —rsinfsin
or ¢ 0 ¢ o 9
dy . day : y .
§—5m05m¢ %—rcowsmcp a——rschos¢
z . 0z
g—cose @——rsm() %—0

The virtual displacement about x, y and z will be

ox ox
ox _a—5r+£(56+—¢ ¢

dx = sin 6 cos ¢por + r cos 6 cos ¢o0 — 1 sin O sin Ppo¢p
Similarly,

dy .. 9
by = Lo+ 20+ f;cp

0x = sin @ sin ¢or 4 r cos 0 sin 4)59 + rsin 6 cos ¢

8 0z

0x = cos 06r + —rsin 6460
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2. Consider the motion of a particle of mass m moving in space. Selecting the cylindrical
coordinates (p, ¢, z) as the generalized coordinates, calculate the generalized force compo-

nents acting if a force E=Fi+ F, f + E.k acts on it.
Answer:

We know that the generalized force is defined as

ox; ox ay 0z
Q]—Zﬂaq anq +Pyaq +anq]
Then,
L o0x ay 0z
QP_FX$+F8p+FZ$
8 dy 8
L o0x ay 0z
Qj= an + Fy V3, +an

To find the generalized force, let us find the transformation partial derivatives,

X = pcos¢ y = psin¢ z=12z

Therefore,
9x _ cos a_y = sin a_z =0
g P T T
ax——sm a_y_ cos 8_2_0
0x Yy 0z
P e

Then the components of generalized force will be
Qp = Fxcos¢p + Fysing = F,

Qp = —Frpsin¢ + Fypcos$p = pFy

Qz:Fz

3. Two equal masses m connected by a massless rigid rod of length / forming a dumb-bell is

rotated in the xy plane. Find the Lagrangian of the system.
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Answer:

o .\9
. i
weg

Figure 3.7: A dumbbell in xy-plane

The system has three degrees of freedom. The cartesian coordinates x1, y; and the 6 can be

selected as the generalized coordinates. From the figure we can write,

Xy = x1+ Lcosb and Y2 =y1 +Isinf

Xp = %1 — Isin 6 and o = 41 + 1 cos 09

The kinetic energy of the system will be

T = g+ )+ gm(3+ 9
substituting the expression for ¥, and 1, in the above expression,
T =m(x3 +93) + %m(lzé2 — 11%10sin 6 + 2110 cos )
The potential energy of the system is given by
V = mgyy + mgys = 2mgy, + mgl sin6

Then the Lagrangian of the system will be

L=m(¥+93)+ %m(lzé2 — 11%10sin 6 + 2110 cos 0) — 2mgy; + mgl sin 6

We can use the above Lagrangian to find the equations of motion. If we substitute the
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derivative of the above Lagrangian in the Lagrangian equations of motion we get the equa-

tions of motion as,

2i1 — 16sinf — 16% cos 6 = 0
2ij1 +16cos§ —16*sinh = 0

126 — 1% sin 6 + lij1 cos 4 gl cos = 0

3.10 Questions for self study

1.

What is virtual displacement? State and Explain D’Alembert’s principle of virtual work.

. Derive the Lagrangian equations of motion from the D’Alembert’s principle of virtual

work.

. State and explain Hamilton’s principle of least action.

Deduce the Lagrangian equations of motion from Hamilton’s principle of least action.

. Describe electromagnetic fields as velocity dependent potential.

3.11 Answers to check your progress

1.

Displacement of the configuration of the system at an instant of time being consistent with

forces of constraints is known as virtual displacement.

. D’Alembert’s principle of virtual work states as ‘the virtual work done by the external

forces acting on a system in equilibrium is zero’.

. Hamilton’s principle of least action states that ‘Of all the possible paths along which a

dynamical system may move from one point to another within a given interval of time
consistent with constraints, the actual path followed is that which minimizes the time

integral of the Lagrangian’.

Potentials that depend on velocities are called velocity dependent potentials. These arise

when the forces depend on velocity.
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UNIT-4: Applications of Lagrangian formulation

Computing Lagrange’s equations, conservation theorems and symmetry properties, determina-

tion of equations of motion for some example problems.

4.0 Objectives

After studying this unit you will be able to

* Describe the method to construct the Lagrangian and use it to find the equations of motion

of a system.

¢ Use the Lagrangian mechanics to find the equations of motion of several simple mechani-

cal systems.

* Describe the conservation theorems and symmetry in Lagrangian.

4.1 Introduction

We learned about the Lagrangian formulation in the previous unit. In this unit we shall learn
how to use the Lagrangian formulation to determine the equations of motion of some example

systems.

4.2 Constructing Lagrangian

The Lagrangian of a system is defined as a function that is difference between the kinetic and

potential energy functions.

L=T-V

In order to determine the equations of motion using Lagrangian approach the following

steps must be followed.

1. First we have to decide the generalized coordinates of the system. Note that they are not

unique, they are considered based on the mathematical convenience.
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2. Once the generalized coordinates are decided, kinetic energy and potential energies are
expressed in terms of those generalized coordinates and corresponding generalized veloc-

ities.

3. The Lagrangian is constructed by taking the difference between the kinetic and potential

energy functions.

4. The derivatives of Lagrangian is determined with respect the the generalized coordinates

and generalized velocities.

5. Then the Lagrangian equation of motion

d /o 0
a(a—qﬁ)—a—qﬁ:o

is used to determine the equations of motion.

4.3 Determination of equations of motion using Lagrangian formulation

Now let us use the above described method to find the equations of motion of some example

systems.

4.3.1 Free particle in Cartesian coordinate system

Consider a free particle of mass m moving in a three dimensional space. The free particle means
it is not experiencing any king of force. Hence its potential energy will also be zero. Thus the
Lagrangian of the particle is equal to the kinetic energy of the particle.

Let us use the Cartesian coordinates x, y and z as the generalized coordinates. Hence cjl_atc =X,
dy
dt

dz _
datr

Then the expression for kinetic energy will be

= yand Z will be the generalized velocities.

1 1 . : .
T = Emvz = Em[xz + 92 + 2%

Because the potential energy of the free particle is zero, the Lagrangian can be taken as

L:T—V:%m[x2+y'2+7;2} -0
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L:%m[x2+y'2+7;2]

Let us find the derivatives of the Lagrangian with respect to the generalized coordinates and
generalized velocities. Note that there are no generalized coordinates present in the expression
for Lagrangian. Hence all the derivatives of Lagrangian with respect to the coordinates becomes

zero.

oL _, oL _, oL

g_l @_1 g_o

The derivatives of Lagrangian with respect to the velocities will be

oL oL oL

g—mx, @:my, g—mz

We know the general equation of motion in Lagrangian formulation,

d /0L oL
4o\ _ 98 _ th g — _ _
dt <8q1> aql 0 wit 1 X, 42 Y, g3 z

Using the derivatives of the Lagrangian with respect the the generalized coordinates and

velocities in the above expression we get,

%(%)‘%:0 — %(mdc)—OzO — mi =0
Similarly,

HE) R0 = Ao = me

%(%)—3—2:0 — %(mz‘)—O:O — mz =0

Hence, the equations of motion of the particle will be

mi = 0; my = 0; mz =20

On integration, the above set of equations will give,

mx = Ciy; ﬂ’ly = Cly; mz = Cyq,
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Further integration will give us,

mx = Clxt + C2x} my = Clyt + Czy; mz = Clzt + CZZ

In the above expressions, C’s are constants of integration which can be determined with
known initial conditions. Note that the above equations are equations of straight line. Hence,
we can conclude that the free particle travel along straight line.

If the particle was at origin with coordinates (0, 0,0) with a initial velocity iy, uy and u; along

x, y and z axes respectively at t = 0, the above general equations of motion reduces to

X = Uyl y = uyt; Z = Uyt

Note: Similar to generalized coordinates and generalized velocities, we also define general-
ized momenta. However this is not defined as product of mass and generalized velocity but as

the derivative of the Lagrangian with respect to the generalized velocities.
oL
Pi =5
04,
In the above problem, the generalized momenta are same as the linear momenta along x, y
and z axes because we are using Cartesian coordinate system. Further, there are some interest-

ing facts regarding this generalized momenta that we shall discuss after discussing few more

examples.

4.3.2 Free particle in spherical polar coordinate system

Once again consider a free particle of mass m moving in a three dimensional space. Let us use

d a .
the spherical polar coordinates r, f and ¢ as the generalized coordinates. Hence d—; =7, i 0
and ‘Zl—(f = ¢ will be the generalized velocities.

The three dimensional velocity of the particle in spherical polar coordinate system can be

taken as

¥ = i? + 100 + rsin 6

Then the kinetic energy of the particle would be

57



Course MP 1.1 KSOU

1 . .
T =m [# + 120% + r* sin? 09|
Because we have considered a free particle, the potential energy is zero. Hence the La-
grangian will be equal to the kinetic energy itself. Thus we can take the Lagrangian as
1 . ;
L=T-V= Em[r'z + 1267 + r* sin? ¢

Now let us find the derivatives of the Lagrangian with respect to the generalized coordinates

and generalized velocities

‘;_I; — %m [0+ 2r6% + 2rsin® 09*| = mr(6* + sin® 0§?)
g_le‘ = %m [04 0 + r*2sin 0 cos 0¢?] = mr? sin 20¢*
g_; _ %m[O-l—O-I—O] 0
3_1; = %m[Zi’—i—O—i—O] = mi
% = %m [0+ 220 + 0] = mr6
g_(?) = %m[O +0 + % sin? 62¢] = mr? sin? 0¢

Now let us use the above derivatives in Lagrangian equations of motion

d /0L JoL .
$<a_qi>_a_qi_o withgy =7, g2=10, qg3=1¢

d oLy OL _ d, 2 20
E(ﬁ) 5 =0 = dt(mr) mr (6~ + sin” 0¢~) = 0

i a—L —a—L— i 24\ 2 . v
dt(aé) 90 =0 — dt(mr 9) mr-sin260¢- =0
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=0 = i@m%mHW)—ozo

d ;oL\ L
( )’_55 dt

dt\og
Thus, we have the three equations of motion of the free particle in spherical polar coordinate

system as

% (mi) = mr(6* + sin? 4% % (mr*) = mr* sin 20 %(mr2 sin? 0) =0

The third equation implies mr? sin? 8¢ = constant. Let that constant be denoted by lp and it
represents the generalized momentum with respect to ¢. We also call this as azimuthal angular

momentum. Hence we can observed that for a free particle, the azimuthal angular momentum

is conserved. From this equation we can write,

_
mr2 sin? 0

Using this in the second equation of motion, we get,

2
Iy

lggnze
m2risin®0  mr2sin*6

%(mrzé) = mr? sin 20§ = mr? sin 20

4.3.3 Simple harmonic oscillator

Consider a simple harmonic oscillator constructed using a mass attached to a spring as shown
in the figure. Let m be the mass and k be the spring constant. Let the mean position coincides
with the origin and x be the position of the mass at any instant and is the generalized coordinate.

Then x will be the generalized velocity.

k

00 =

Figure 4.8: A mass attached to a spring executing simple harmonic oscillations

The kinetic and potential energies of the oscillator can be taken as
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T = -—mx

1 2
5 U—Ekx

Then the Lagrangian of the harmonic oscillator will be

1 1
L=T—U:§mx2—§kx2

The derivative of the Lagrangian with respect to the generalized coordinate and velocity

would be

oL _
ox

oL

o _
ox X

mx

Now consider the general form of the Lagrangian equation of motion,

d 9Ly oL L
E<8_q'i)_a_qi_o with g; = x
Then,
d (dLy oL d, B
%(g) — 5 =0 — o (m) = (—kx) =0

This gives us the well known harmonic oscillator equation

mi-+kx=0

The solution of the above equation can be taken as

x = Asinwt with w = 4/ % and A being the amplitude of the motion

4.3.4 Simple pendulum

Consider a simple pendulum constructed using a bob of mass m attached to a inextensible string
of length I suspended from a rigid support. The bob can execute oscillations about a mean
position due to the action of gravity with acceleration due to gravity g. Let 8,5 be the maximum
angular displacement that will result the bob to reach a height of i with respect to the mean
position. Let the instantaneous angular displacement 6 be chosen as generalized coordinate

and 6 be the corresponding generalized velocity. Then the expression for kinetic and potential
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energies will be

e L L L L]

Figure 4.9: Simple pendulum

1 1 .
T = Emvz = EmIZQZ

V =mgh =mg(l —1cos@)

The Lagrangian of the pendulum will be

L=T-V= Fmo” = ~ml?*6* — mg(l —1cos0)

Let us find the derivatives of the Lagrangian with respect to the generalized coordinate and

velocity.

oL oL

= —mglsinf and 5 mi6

=5 =

Using the above derivatives in the Lagrangian equation of motion as

d /0L oL .

d /oL oL d, o oA
$<£)_E_O — E(ml 6) +mglsin® =0

The above equation of motion can be simplified as,
g

9+Tsin9:0
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Under oscillations of small amplitude, the angular displacement will be very small and then
we can approximate sinf ~ 6. Then the equation of motion reduces to equation of simple
g

harmonic motion with a frequency w = |/ <.

/
6+ w?0 =0

4.3.5 Atwood machine

my

Figure 4.10: Atwood machine

Atwood’s machine is an illustration of a simple mechanical system with a holonomic con-
straint. It consists of two masses m; and m; tied together by means of a light inextensible cord
of length /. The cord passes round a light frictionless pulley and the two masses hang on the
two sides of the pulley. We can observe from the figure below, that there is only one variable x,

since the length of the cord fixed. The kinetic and potential energies of the system are given by

1 1 . . . .
T = —my %% + Zmpx? Here, the velocity of mass mj is the derivative of | — x that is X

2 2

V = —mgx —mpg(l — x)

The potential energy is negative because the reference is taken at pulley, and the masses are

below it.
Then the Lagrangian of the system will be
1

1
L= Emlxz + Emzxz + mygx + mpg(l — x)
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The derivatives of the Lagrangian with respect to the generalized coordinate and velocity

will be

-y 5r = ()
ax_m1 my)8g ax—m1 myp )X

Consider the general Lagrangian equation of motion,

d /0L oL .

—

d /oL oL
< ) =0 my + mp)x| — (my —my)g =0

2E)-< Ml
dt \ ox ox dt

. My —mp
¥=—>=
my + my

On integrating the above equation twice we can write the equation of motion in algebraic

form as

1
x(t) :xo+vot—|——<

my — mz) 12
2

my + mp

4.4 Conservation theorems and symmetry in Lagrangian

So far we have discussed Lagrange’s dynamical equations of motion. If the system under con-
sideration has n degrees of freedom, we get n second order differential equations. The solution
of each equation will need the evaluation of a double integral and hence involve two constants
of integrations. These are usually the initial position g, and initial velocity 4,. Naturally the
solutions of n differential equations will involve 2n constants.

In many problems, the solution cannot be obtained in terms of known functions. Moreover,
sometimes solutions of the type q; = g;(t) are no interest to us. For example, when we study
the motion of systems consisting of atoms and molecules we are only interested in evaluation of
quantities such as energies and momenta. However, information regarding the physical nature
of the motion of the system can often be extracted without integrating the equations of motion.

On considering the symmetries of the system, one can immediately obtain first integrals of
the equations of motion. The first integrals are constants of motion. These are the first order

differential equations of the type
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(91,92, -, Gn; 41, G2), - Gun, t) = constant

It is obvious that the first integral contains the first derivatives of q’s. The first integrals
reveal a lot of information regarding the system under consideration.
Consider a system of particles in a conservative force field. Then the potential energy V
depends only upon the position and we have,
oL oL o(T-V) 0 L S R N
o T ax T oy ey ) ==
In above equation, py, is the momentum of i*" along x; axis. We can generalize this result and

define the generalized momentum as

b — oL
This is often also called canonical momentum or conjugated momentum.
Now consider the Lagrangian equation of motion,
d ( oL ) _JL _ 0
Substituting the expression for canonical momentum in above equation we can write
dpj oL _

Gt ag 0

dpj _ oL
dt — 9q;

In case any one or more generalized coordinates are absent in the Lagrangian even though
the corresponding generalized velocities are present, the derivative of the Lagrangian with re-
spect to those generalized coordinates becomes zero. Then the time derivative of the corre-
sponding canonical momentum also becomes zero. This results in the constancy of the canonical
momentum.

Thus we can conclude that if any one or more generalized coordinates are absent in the
Lagrangian, then the corresponding canonical momentum gets conserved. Such coordinates are
called cyclic or ignorable coordinates.

If a generalized coordinate representing a translation motion is absent in the Lagrangian,
then the corresponding linear momentum gets conserved. Here we can remember the La-

grangian of a free particle in cartesian coordinate system.
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L:%m[x2+y'2+7;2]

Here, all the three coordinates are absent in the Lagrangian. Hence we don’t have to find the
equations of motion, we can directly conclude that the canonical momenta corresponding to all
the three directions are constant and proceed from there to find the equations of motion.

If a generalized coordinate representing an angular motion is absent in the Lagrangian, then
the corresponding angular momentum is conserved. Here we can remember the Lagrangian of

a free particle in spherical polar coordinate system.

1 . .
L=T-V= Em[ifz + 120% + 1* sin® 0]

In the above Lagrangian, the azimuthal angular velocity ¢ is present, but ¢ is absent in the
Lagrangian. Hence the corresponding azimuthal angular momentum is a constant of motion.
If the Lagrangian is not an explicit function of time, then the total energy of the system is

conserved. This is also known as homogeneity of time.

oL

= = 0 —_— Energy is conserved

4.5 Check your progress
Check your progress by answering the questions below.
1. Define Lagrangian.
2. What is a free particle.
3. Write the Lagrangian of simple harmonic oscillator.
4. On what factors the acceleration in Atwood machine depends?
5. What are cyclic coordinates.

6. What is homogeneity of time? What is its significance?

4.6 Keywords

¢ Lagrangian
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Free particle

e Harmonic oscillator

Simple pendulum

Atwood machine

Cyclic or ignorable coordinates

4.7 Worked examples
1. A body of mass m is thrown as projectile. Construct the Lagrangian and determine the
equations of motion.
Answer:
Data:

Let us assume the constant gravitational field acts down the z-axis and for simplicity let
us consider the plane of projectile is in xz-plane. Then let 7 = x7 + yj + zk be its position
vector and 7 = i + i + zk be its velocity. Because the projectile is moving in xz-plane, the
y-coordinate of the particle is zero. As no motion along y-axis, the corresponding velocity

becomes zero.

Then the expression for the kinetic and potential energies of the body will be

1
T = Emvz = Em(a‘cz +22) and V =—mgh=—mgz

Then the Lagrangian of the system will be

1
L:T—Vzim(xz-l—zz)—kmgz

In the above expression, note that the coordinate x is absent. This means it is cyclic and

corresponding conjugate momentum is constant of motion.

oL )
— = mx = (C; a constant

ox

Hence let us only find the derivative of the Lagrangian with respect to the other coordinate.
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a—L—m and a—L—mZ
oz 8 2z

Now consider the Lagrangian equation of motion

;t<aL) -

% _E_O — %(mi)—mgzo

mz = mg

Thus the equations of motion in differential equation form would be

mx = Cy and mz =mg

. Masses m and 2m are connected by a light inextensible string which passes over a pulley

of mass 2m and radius a. Write the Lagrangian and find the acceleration of the system.
Answer:

The given system is an Atwood machine with only one degree of freedom. Let x be the
distance of mass m from the pulley and is chosen as the generalized coordinate. Let [ be

the length of the string and the centre of the pulley is taken as zero for potential energy.

The kinetic energy of the system would be

T = %ma‘cz + mx? + %Iwz = g—)mxz + %1(2)2 = 1(37}1 + —>9’c2

The potential energy would be

V = —mgx —2mg(l — x)

Then the Lagrangian of the system will be

1 Iy
L= §(3m+a—2>x + mgx 4+ 2mg(l — x)
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Lets find the derivatives of the Lagrangian,

oL oL Iy,
g——mg —,—(3m+—)x
Then the equation of motion of the system will be

d <8L) oL

Iy, B
AT —5_0 == (3m+a—2)x+mg—0

The expression for acceleration will be

mg

(3m + ai2>

f=-

2
If we assume the pulley is in the form of a disc, then the moment of inertia will be %.

Then the acceleration will be —g/4.

3. Find the equations of motion of an LC circuit using Lagrangian formulation.

Answer: Consider an LC circuit containing an inductor and a capacitor in series. Let g be

the charge on the plates of capacitor and let 4 be the current through the circuit.

As the capacitor stores the charges and hence the energy stored in the capacitor can be

taken for potential energy as

Similarly the energy held by the inductor is due to the flow of charges. Hence, the energy
of the inductor can be treated equivalent to the kinetic energy of the system. Lower case [ is

used to represent inductance to avoid confusion between the Lagrangian and inductance.

_ Lo
T = 21q
Then the Lagrangian of the system will be
— 1, 7
L=T-V= 2lq C
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Now consider the Lagrangian equation of motion and use the above Lagrangian in it to

obtain the equations of motion.

d (oL oL a . q
a()-%-0 —  Fw-i-
—
1 )
§—=9=0 = j—wiq=0
C
Where w = L The above equation is a simple harmonic equation and hence indicate

VIC

that the current as well as the charge on the plates of capacitor oscillate with a frequency

of w=—.

VIC

4.8 Questions for self study
1. Explain the procedure to find the equations of motion using Lagrangian formulation
2. Determine the equations of motion of a free particle in cartesian coordinate system.
3. Determine the equations of motion of a free particle in spherical polar coordinate system.
4. Determine the equations of motion of simple harmonic oscillator.
5. Determine the equations of motion of simple pendulum.
6. Obtain an expression for acceleration of both the masses in Atwood machine.

7. Write a note on conservation theorems and symmetry in Lagrangian.

4.9 Answers to check your progress

1. Lagrangian is a function that is difference between the kinetic energy and potential energy

functions.

2. A particle on which no forces are acting is called a free particle. In other words, a particle

for which the potential energy is zero is called a free particle.

1 1
3. L= mez + zkx2
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The acceleration in Atwood machine depends on the acceleration due to gravity and the

masses used.

. Coordinates that are absent in Lagrangian are called cyclic coordinates.

Independence of Lagrangian of a system over time is called homogeneity of time. This

leads to the conservation of energy of the system.
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